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Investigating the Generalization of a Special Property of Cubic
Polynomials to Higher Degree Polynomials

David Miller

Abstract: In this paper, the author extends earlier work (Miller, 2011; Miller and Moseley, 2012)
relating roots of polynomial functions to tangent lines of their graphs to fourth and fifth degree
polynomials. Using sliders, the author demonstrates how students can informally test the gener-
alizability of relationships they uncover through dynamic capabilities of GeoGebra.
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1. INTRODUCTION

Miller (2011) discussed how to use a free interactive algebra-
geometry program, GeoGebra, to investigate a special prop-
erty of cubic polynomials. In that article, Miller (2011)
demonstrates various ways to use GeoGebra to illustrate
the special property that, given a cubic polynomial with
three real zeros, a tangent drawn to the curve at the point
at which the abscissa is the mean of two of those zeros
will intersect the horizontal axis at the other zero. This
property was extended by Miller and Moseley (2012) to
higher degree polynomials. These two articles will pro-
vide a better foundation for readers that would like a bet-
ter idea of the ideas in this article. We will use GeoGebra
to extend how this special property of cubic polynomi-
als can be generalized to higher degree polynomials. This
will be done by discussing and illustrating in GeoGebra
the cases for fourth and fifth degree polynomials, deriving
formulas in terms of all but one of the zeros for the fourth
and fifth degree polynomials, and stating the formula for
higher degree polynomials. It is recommended that illus-
tration in GeoGebra for the sixth degree polynomial be
done by the reader to further familiarize themselves with
the GeoGebra commands and the mathematics so that a
complete understanding can be obtained.

2. FOURTH DEGREE POLYNOMIAL EXAMPLE

2.1. Defining a Polynomial with Sliders

Insert four sliders by clicking on the GeoGebra slider tool,
labeling them a, b, c and d. For each slider set the min-
imum to -10, the maximum to 10, and increment to 0.01.
In the Input bar (by default at the bottom of the GeoGebra
window) insert the command

f(x)=(x-a)*(x-b)*(x-c)*(x-d)
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as suggested in Figure 1. This defines function f with
roots a, b, c and d.

Fig 1: Graph of f (x) = (x−a)∗ (x−b)∗ (x−c)∗ (x−d).

Next, type following commands into the Input bar one
at a time: a=-2, b=-1, and c=0. Doing so will assign
new values to the slider variables. Alternatively, you can
adjust the sliders directly by dragging. After completing
this step, your screen should look similar to that shown in
Figure 2.

2.2. Constructing Roots

Next, we plot the x-intercepts of f (x). In the input bar,
start typing in roots. The GeoGebra autocomplete fea-
ture provides a drop down menu of different commands
with roots in them. Select Roots[<Function>, <Start
x-value>, <End x-value>], then replace command pa-
rameters so that the command Roots[f(x),-10,10] ap-
pears in the input bar. Then press Enter. Points A, B, C,
and D, the x-intercepts of the polynomial are generated.
Your screen should look similar to Figure 3.

Next, type g(x)=Derivative[f(x)] into the Input bar
as suggested in Figure 4. This plots f ′(x). Hide the plot by
right clicking on the curve (on a Mac, press control and
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Fig 2: Graph of f (x) = (x−a)∗ (x−b)∗ (x− c)∗ (x−d)
for a =−2, b =−1, c = 0, and d = 1.

Fig 3: Graph of f (x) = (x−a)∗ (x−b)∗ (x− c)∗ (x−d)
for a =−2, b =−1, c = 0, and d = 1 with roots.

click) and unchecking the Show Object option. Alterna-
tively, in Algebra view, click on the blue circle to the left
of g(x) to hide its plot. This is done to avoid overloading
the applet with graphics; we only need the derivative to
define the slope of the tangent line in later steps.

2.3. Constructing Tangent Lines Passing Through a Root

We need to provide some detail for the next formula that
needs to be inputted into GeoGebra. We want to find the
solutions to the quadratic equation obtained from the proof
for higher degree polynomials. Miller and Moseley (2012)
note that for polynomials of degree n > 2, there exist n−2
values x0 such that

n−1

∑
i=1

n−1

∏
j=1

(x0− x j) = 0 (1)

where i 6= j and x1, x2, . . . xn−1 are zeros of the polyno-
mial of degree n−1. When a tangent is drawn to a graph
of the polynomial of degree n− 1 with abscissa equal to

Fig 4: Constructing and hiding g(x), the derivative of
f (x).

x0, the line will intersect the horizontal axis at the nth
zero.

For our current example, we have

n−1

∑
i=1

n−1

∏
j=1

(x0− x j) = (x0− x2)(x0− x3)

+(x0− x1)(x0− x3)+(x0− x1)(x0− x2) (2)

where x1 = a, x2 = b, and x3 = c. From this it follows
that

(x0−b)(x0− c)+(x0−a)(x0− c)

+(x0−a)(x0−b) = 0 (3)

Expanding (3) yields

3x2
0 + 2(a + b + c)x0 + ab + ac + bc = 0. (4)

Using the quadratic equation, the solutions to this equa-

tion are x0 =
a+b+c±

√
a2+b2+c2−ab−ac−bc

3 , which gives us
the two solutions which we’ll refer to as e and h. Accord-
ing to Miller and Moseley (2012), lines tangent to f (x) at
abscissa values e and h will intersect the horizontal axis at
x4 = d.

Next, enter e and h into GeoGebra by typing the following
commands into the Input bar:

Next, as illustrated in Figure 5, type y-f(e)=g(e)*(x-e)
into the input bar to get the tangent line at (e, f (e)) that has
an x-intercept at the other zero, D. Repeat for tangent line
at h, by cutting and pasting y-f(h)=g(h)*(x-h). Notice
this tangent line also has a x-intercept at point D.
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Fig 5: Screenshot of the GeoGebra graph of f (x) with tan-
gent line intersecting at point D.

2.4. Changing Object Properties

Note that the curves in the preceding figures have color.
While this is not necessary, color helps students distin-
guish various objects on the screen. You can enhance the
appearance of your sketches by modifying various object
properties of your sketch. In your most recent sketch, right
click (on a Mac, control click) on your tangent line and
select Object Properties. You’ll see a window similar to
the one depicted in Figure 6.

Fig 6: Object properties dialog box for tangent line i

As Figures 7 and 8 illustrate, you can modify the color
and thickness of the line (in Figure 5, I chose Red with
thickness of 6).

Fig 7: Color property for tangent line i

Repeat for other objects (e.g., f (x) and sliders) in your

Fig 8: Thickness property for tangent line i

sketch. Under object properties basic, you can label f (x)
and each tangent line by selecting the box for show label
and clicking on the down arrow in the selection box to
choosing name and value option. Your screen should look
similar to Figure 9.

Fig 9: Screenshot of the GeoGebra graph polished with
color.

2.5. Generalizing with Sliders

Before we start our next example, take a moment to infor-
mally confirm that our earlier property works for any value
of a, b, c, and d. Choose any one of the sliders and select
it. Use the keyboard right and left arrows to move the
slider to different values (or simply drag with your com-
puter mouse). Choose other sliders and vary them. We
can see illustrations of cubic that has distinct real zeros
and repeated real zeros. Miller and Moseley (2012) show
in the general proof that the property holds with all num-
bers including complex zeros.

3. FIFTH DEGREE POLYNOMIAL EXAMPLE

Let’s extend our earlier observation with a polynomial of
degree 4 to polynomials of degree 5. We’ll modify our
existing GeoGebra sketch to see if our observations appear
to hold in the new case.

Begin by adding a new slider to your sketch with min-
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imum -10, maximum 10, and increment of 0.01. Next,
redefine f (x) by typing the following command into the
Input bar. (Alternatively, one may redefine the function
by double clicking on it in the Algebra view).

f(x)=(x-a)*(x-b)*(x-c)*(x-d)*(x-e)

Next, type a=-2, b=-1, c=0, d=1, and e=2 in the Input
bar. This generates a curve with distinct roots that displays
well in the Graphics View. GeoGebra automatically up-
dates roots to A, B, C, D, and E. After you complete these
steps, your sketch should look similar to the one depicted
in Figure 10 (note that we have deleted the tangent lines
from our previous example).

Fig 10: Graph of f (x) = (x− a) ∗ (x− b) ∗ (x− c) ∗ (x−
d)∗ (x− e).

Using an approach analogous to our previous example,
we’ll use 4 of the 5 roots of f (x) to generate a cubic equa-
tion. The 3 solutions to this cubic will be used as abscissa
values of points of tangency for the graph of f (x). If all
works as expected, the three tangent lines that we con-
struct at these points of tangency should pass through the
remaining root of f (x).

From Miller (2012), it is apparent that for higher degree
polynomials

n−1

∑
i=1

n−1

∏
j=1

(x0− x j) = 0 (5)

where i 6= j and x1, x2, x3, and x4 are four roots of the fifth
degree polynomial.

Expanding this out we have

(x0− x2)(x0− x3)(x0− x4)+

(x0− x1)(x0− x3)(x0− x4)+

(x0− x1)(x0− x2)(x0− x4)+

(x0− x1)(x0− x2)(x0− x3) = 0 (6)

When x1 = a, x2 = b, x3 = c, and x4 = d,

(x0−b)(x0− c)(x0−d)+

(x0−a)(x0− c)(x0−d)+

(x0−a)(x0−b)(x0−d)+

(x0−a)(x0−b)(x0− c) = 0(∗) (7)

Since this is a cubic equation, we use GeoGebra to solve
it (rather than solving by hand). In Geogebra, type the
following definition into the Input bar:

m(x) = (x−b)(x− c)(x−d)+

(x−a)(x− c)(x−d)+

(x−a)(x−b)(x−d)+

(x−a)(x−b)(x− c)

Change the appearance of m(x) to be a dotted line by right
clicking on its graph, selecting Object properties, and
from the Style tab changing the Line Style to dotted. This
somewhat hides m(x), but illustrates the three important
points that are solutions of this cubic equation. After com-
pleting these steps, your sketch should look similar to the
one depicted in Figure 11.

Fig 11: Graph of f (x) and m(x).

To find the zeros of m(x) (i.e. solving the equation (*)),
cut and paste into the Input bar, Root[m(x)]. You should
see the points F , G, and H appear on the graph and in Al-
gebra view. These are the three points at which we antic-
ipate the tangent lines have x-intercepts at E. To confirm
this, we first obtain the x-coordinates of F , G, and H by
typing the following commands separately into the input
bar: n=x(F), p=x(G), and q=x(H).

Next, enter j(x)=Derivative[f(x)] in the Input bar
and hide it (again to avoid the screen to get to cluttered).
We now insert the three tangent lines that we anticipate
will intersect at the fifth zero, E.

Now type separately the following commands:

y-f(n)=j(n)*(x-n)
y-f(p)=j(p)*(x-p)
y-f(q)=j(q)*(x-q)



North American GeoGebra Journal (ISSN: 2162-3856) Vol. 2, No. 1, 2013 9

Since two of the tangent lines are the same for these spe-
cific parameters a, b, c, and d type in d=1.2 into the Input
bar. This make three distinct tangent lines visible. Option-
ally, add color, line thickness and labeling to enhance your
sketch. Ultimately, your sketch should appear similar to
the one depicted in Figure 12.

Fig 12: Graph of f (x) and m(x).

3.1. Generalizing with Sliders

Again do a drag test by varying the sliders to different
values to informally confirm that the property holds for all
real zeros a, b, c, d, and e.

4. CONCLUSION

This article has shown how to use GeoGebra to extend a
mysterious property of cubic polynomials to more general
properties for fourth and fifth degree polynomials. One
can illustrate this for an nth degree polynomial to find the
n− 2 points on the x-axis in terms of n− 1 zeros, that is
given by the solutions to the equation below, where x1,
x2, . . . , xn−1 are the n− 1 zeros, ∑

n−1
i=1 ∏

n−1
j=1(x0 − x j) =

0, where i 6= j, such that the tangent line to the nth de-
gree polynomial at each (si, f (si)) for i = 1,2, . . . ,n− 1
intersects the x-axis at the other zero xn. Here si for i =
1,2, . . . ,n− 1 are the zeros of the resulting n− 2 degree
polynomial derived from the formula above. See the ar-
ticle Miller and Moseley (2012) for more details and the
underlying calculus concept behind the general property
for polynomials. The reader should illustrate this for the
6th degree polynomial and think about the proof before
referencing the articles. This article shows some basic
functions of GeoGebra so that the readers may familiar-
ize themselves with the program. This is a good tool for
students to discover some mathematics about polynomials
in which they can see some specific examples and work
on a more general proof via paper and pencil.
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