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Volume and area ratios with GeoGebra
Libuse Samkova

Abstract: This article was motivated by student work in a biological laboratory where a question
was asked regarding the liquid level corresponding to 1

5 of the volume of a laboratory flask. In
this article, we use GeoGebra to explore such questions, analyzing volume and area ratios for
containers of various shapes. We present various dynamic GeoGebra models including one of the
experiment which initiated the article.
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1. INTRODUCTION

This article was motivated by student work in a biological
laboratory during the demonstration of a candle experi-
ment similar to that suggested illustrated in Fig. 1.

Fig 1: An illustration of a candle experiment (Gallástegui
2011).

The student experimenter ended the presentation by stat-
ing that “the liquid in the flask occupies 20% of the flask
volume,” and the audience nodded in agreement. Is it re-
ally so easy to determine 1

5 of the flask volume? Con-
sider the following steps required to complete the calcula-
tion.

• We have to determine 1
5 of the volume of the flask

whose shape consists of a ball and a cylinder linked
together.

• We have to take into account the volume of the sub-
merged part of the candle.

2. BALL CASE

Let’s start with a simplified version of the problem by cal-
culating 1

5 of the volume of a ball (and ignoring, for the
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moment, the volume of the liquid in the cylindrical por-
tion of the flask). Note that 1

5 of the ball volume does not
correspond to 1

5 of the ball height.

The volume of a ball with radius r is given by a formula
4
3 πr3. The liquid in the ball reaches an unknown height
h, and its volume equals the volume of the shaded re-
gion shown in Fig. 2 (which we refer to as a spherical
cap).

Fig 2: Front views of the liquid in the ball (left), and of
the spherical cap (right).

A basic volume formula for a spherical cap with height h
and base radius a is given by

Vcap =
1
6

πh(3a2 +h2) (Weisstein, 2012a) (1)

From Pythagorean theorem we have

a2 = r2 − (r−h)2 = r2 − r2 +2rh−h2 = 2rh−h2 (2)

which implies that

Vcap =
1
6

πh(6rh−3h2 +h2)

=
1
6

πh(6rh−2h2)

=
1
3

πh2(3r−h) (Weisstein, 2012a) (3)

For clarity in subsequent calculations, we express the height
of the liquid as a k-multiple of the height of the ball, i.e.,
h = k ·2r. Then,

Vcap =
1
3

π(k ·2r)2(3r− k ·2r) =
4
3

πk2r3(3−2k) (4)
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Next, we solve the following equation to find a liquid level
corresponding to 1

5 of the ball volume.

Vcap =
1
5
·Vball (5)

4
3

πk2r3(3−2k) =
1
5
· 4

3
πr3 (6)

k2(3−2k) =
1
5

(7)

2k3 −3k2 +
1
5

= 0 (8)

Note that the ratio 1
5 appears as a constant term in the re-

sulting cubic equation, as shown in (8).

This equation does not have an easy manual solution, but
we can solve it graphically with help of GeoGebra. We
generate the graph of a function f (x) = 2x3 −3x2 + 1

5 and
construct the x-coordinate of the intersection of the graph
and the x-axis. This coordinate is the required solution to
the cubic equation (8).

Fig 3: Graphical solution to 2x3 −3x2 + 1
5 = 0.

As shown in Fig. 3, the solution is approximately 0.29.
What does it mean? If we have a ball with diameter 10
cm, then the height of the ball is also 10 cm, and the liquid
occupying 1

5 of the ball volume reaches a height of 0.29 ·
10 cm ≈ 2.9 cm.

2.1. Generalizing the ball case

Next, we generalize the problem for arbitrary ratio m
n of

ball volume. The corresponding k now satisfies the equa-
tion 2k3−3k2+ m

n = 0. As shown in Fig. 4, we use sliders
m and n to generate function f (x) = 2x3 − 3x2 + m

n , then
- as before - we approximate the solution using the inter-
section tool.

Alternatively, we can create a dynamic sketch modeling
the liquid in the ball, as shown in Fig. 5. (Editor’s note: A
copy of the sketch, Fig5.ggb, is provided alongside the pdf
version of this paper.)

Fig 4: Graphical solution using sliders.

Fig 5: Dynamic model illustrating a solution for 1
5 of ball

volume.

The model is based on the graphical solution from Fig.
4. First we create a circle with radius r and sliders for
m and n. For given m and n, we define height ratio k as
the solution to the equation 2x3 − 3x2 + m

n = 0. Then we
create a circumcular arc with a height k ·2r, and adjust its
opacity to 80 percent to simulate liquid.

With this dynamic model we can investigate various vol-
ume ratios. Note that the liquid level for 1

10 of the volume
reaches approximately 1

5 of the ball height. This corre-
sponds to the numerical solution in Fig. 4.

3. BACK TO THE EXPERIMENT

3.1. Building the flask with liquid

With some work, a dynamic sketch modeling the liquid
in the flask from the original candle experiment can be
constructed. We do so first without the candle, answer-
ing the question “What does 1

5 of the flask volume look
like?” Again, the model is constructed dynamically, with
sliders used to modify flask proportions (ρ controls the ra-
dius of the cylinder; r, the radius of the ball; h, the height
of the cylinder). These features are illustrated in Fig. 6.
(Editor’s note: A copy of the sketch, Fig6.ggb, is provided
alongside the pdf version of this paper.)
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Fig 6: A dynamic model of the flask volume

3.2. Adding the candle

Building on the previous sketch, we create a model of
the experiment with a candle inside the flask. The con-
struction requires knowledge of the Archimedes’ principle
of buoyancy which states that the buoyant force exerted
on a solid floating in the liquid is equal to the weight of
the volume of the liquid which is displaced by the solid,
i.e.,

Vsolid ·g ·ρsolid = Vsubmerged part ·g ·ρliquid (9)

Vsubmerged part = Vsolid ·
ρsolid

ρliquid
(10)

see (Weisstein 2012c and Burley, et al. 1997). The liquid
in our experiment is the water, with density 1000 kg/m3.
The density of the candle is determined by an auxiliary
experiment as 950 kg/m3. This means that

Vsubmerged part = Vcandle ·
950
1000

(11)

Vsubmerged part = 0.95 ·Vcandle (12)

Note that (12) implies the following:

• If 95% of the candle height is less than the depth of
the water, then the candle floats in the water, and the
height of the submerged part of the candle equals the
95% of the candle height.

• Otherwise the candle stands on the bottom.

We use sliders to model changes in candle proportions (ch
for the height of the candle, cr for base radius). See the
final illustration in Fig. 7. (Editor’s note: A copy of the
sketch, Fig7.ggb, is provided alongside the pdf version of
this paper.)

4. FURTHER MODELS OF VOLUME AND AREA
RATIOS

A cone provides an interesting, and more challenging, con-
text for exploring volume ratios. Unlike the ball, a cone
does not satisfy the rule that half of the volume corre-
sponds to half of the height.

Fig 7: A dynamic model to the candle experiment.

The volume of a cone with base radius r and height h is
given by a formula 1

3 πr2h. The liquid in the cone reaches
an unknown height hc, and its volume equals the volume
of a conical frustum with height hc, and base radius r. The
top radius of the conical frustum is not obvious, but it can
be derived from hc, r, and h. Let’s express hc as a k-
multiple of the height of the cone, i.e., hc = k · h. Then
the similarity of triangles shown in Fig. 8 gives the top
radius of the conical frustum equal r(1− k).

Fig 8: A front view of the liquid in the cone (left), and the
two similar triangles (middle and right).

Weisstein (2012b) notes that the volume of a conical frus-
tum can be expressed as

Vf rust =
1
3

πh
(
r2

base + rbasertop + r2
top
)

(13)

Thus, in our particular case:

Vf rust =
1
3

πkh
(
r2 + r2(1− k)+ r2(1− k)2)

=
1
3

πr2kh(3−3k+ k2) (14)

We seek a liquid level corresponding to m
n of the cone vol-
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ume. We accomplish this in the following manner.

Vf rust =
m
n
·Vcone (15)

1
3

πr2kh(3−3k+ k2) =
m
n
· 1

3
πr2h (16)

k(3−3k+ k2) =
m
n

(17)

k3 −3k2 +3k− m
n

= 0 (18)

Again, the ratio m
n appears as a constant term in the cubic

equation, but with a negative sign.

A GeoGebra model of the liquid in the cone can be con-
structed using an auxiliary function f (x) = x3−3x2+3x−
m
n . It is worth noting that the level of the liquid does not
depend on the base radius r, shown using a slider for r.
This is illustrated in Fig. 9. (Editor’s note: A copy of the
sketch, Fig9.ggb, is provided alongside the pdf version of
this paper.)

Fig 9: A dynamic model of the cone volume.

Similar dynamic models can be obtained for the area of
plane figures, e.g., the area of a circle. In this case the
auxiliary function is given by a formula

f (x) = arcsin(2
√

x− x2)−2
√

x− x2(1−2x)−π
m
n

(19)

We encourage the interested reader to use this function to
conduct further explorations.

5. CONCLUSION

The topics of volume and area ratios have not been a com-
mon part of mathematics lessons, due to the fact that equa-
tions (8), (18), and (19) do not have an easy manual so-
lution. However, with the assistance of GeoGebra, such
equations are now accessible to students.

The GeoGebra models presented here are restricted to two
dimensions. There are skilled GeoGebra developers work-
ing on a 3D version of GeoGebra, so in the near future it
will be possible to create similar 3-dimensional dynamic
models for balls, cones, and other solids.
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