FROM SEMI-PROOF TO PROOF: MOTIVATING DEDUCTIVE THINKING THROUGH INDUCTIVE EXPLORATION

Moshe Stupel ${ }^{1}$ and David Ben-Chaim ${ }^{2}$
${ }^{1}$ Shaanan-Academic College of Education and Gordon-Academic College of Education-Haifa, Israel
${ }^{2}$ Technion-Israel Institute of Technology—Haifa, Israel

Abstract

In this short article, the authors introduce and prove a geometrical property involving externally tangent circles. Using an applet to model the problem situation, the authors illustrate how GeoGebra applets can serve as an accelerator of understanding, helping aid in the progression from inductive to deductive proof.

Keywords: circles, argumentation, proof, GeoGebra

Introduction

The use of dynamic software (DGS) enhances the mathematical and technological knowledge of learners. Alqahtani and Powell (2016) claim that "learners develop their own knowledge of how to use the tool [in this case the GeoGebra software] which turns tool into an instrument that mediates an activity between learners and a task" (p. 72). Stupel and Ben-Chaim (2017) echo this claim, indicating that "the advent of dynamic geometry environment (DGE) software serves as an intermediatory tool that bridges the gap between a mathematical problem or concept and its symbolic proof by providing a clear visual representation of the equation involved" (p. 86). Stupel and Ben-Chaim (2017) refer to the inductive nature of the DGE as "semi proof" and simultaneously warn that "students must be aware that formal proof based on mathematical arguments (using deductive approaches rather than relying on virtual experiments) is still required" (p .86). The following geometrical problem provides an illustrative example.

Two circles O_{1} and O_{2} are tangent externally at point M. Two straight lines passing through point M intersect the circles at points A, B, C, D as can be seen in Figure 1.

1. Prove that $A C \| D B$.
2. Is this property also holds when the two circles are tangent internally?

Using two separate interactive applets, one can experience this property actively. We've constructed a sketch illustrating the case of external tangent point at https://www.geogebra.org/m/ eddv2aaf and another one highlighting an internal tangent point at https://www.geogebra. $\circ \mathrm{rg} / \mathrm{m} / \mathrm{f} 5 \mathrm{df} 9 \mathrm{pmf}$. In both sketches, $E F$ is a tangent line to both circles at point M.

Figure 1. Problem situation with two externally tangent circles.

As students engage with the applets, they surmise that chords $A C$ and $D B$ are parallel when the two circles are tangent externally or internally. As they actively explore this property, students may also conjecture that the measure of the angles between the tangent line $E F$ and the chords $A M$ and MB remain equal to the measure of the peripheral angles $A C M$ and $B D M$ based on the chords $A M$ and $M B$.

Mathematical Proof A (see Figure 1)

Proposition 32 in Book III of Euclid's Elements (Heath et al., 1956) states that "If a straight line touches a circle, and from the point of contact there is drawn across, in the circle, a straight line cutting the circle, then the angles which it makes with the tangent equal the angles in the alternate segments of the circle." Applying this proposition to the problem at hand, the following result holds: $\angle A M E=\alpha \Rightarrow \angle A C M=\alpha$ (see Figure 1). By the same reason $\angle B M F=\alpha \Rightarrow \angle B D M=\alpha$. Hence, by using the theorem of vertical angles for $\angle A M E$ and $\angle B M F$ it can be concluded that $\angle A C M=\angle B D M$. Then, by the theorem that if two alternating interior angles between two lines are equal, then the two lines are parallel, we achieve the result $A C \| D B$.

Note if presenting this activity to middle or high school students, a teacher might require his/her students to write the proof in a two-column format. We provide a proof in this style in the following section.

Second Proof

Another way to prove that chord $A C$ is parallel to chord $D B$ is by connecting O_{1} with points A, C, M and connecting O_{2} with points B, D, M to form three isosceles triangles in each circle. This idea is illustrated in Figure 2.

Figure 2. Forming isosceles triangles within each circle.

Below, we use the idea from Figure 2 to generate a two-column proof to rigorously confirm that $A C \| D B$. As previously noted, this format is popular in many secondary school classrooms.

Theorem 1. If segment $E F$ is a tangent at point M to the circles O_{1} and O_{2} (see Figure 2), then $A C \| D B$.

Proof.

Statement	Reason
1. Segment $E F$ is a tangent at point M to the circles O_{1} and O_{2} (see Figure 2)	1. Given.
2. $\angle O_{1} M E=\angle O_{2} M E$.	2. By the theorem: the angle measure between a tangent to a circle and radius of the circle from the tangent point is 90°.
3. $\triangle A O_{1} M, \triangle C O_{1} M, \triangle A O_{1} C, \triangle B O_{2} M$, $\triangle D O_{2} M$, and $\triangle B O_{2} D$ are isosceles.	3. $\begin{aligned} & A O_{1}=O_{1} M=O_{1} C=r_{1} \text { and } \\ & B O_{2}=O_{2} M=O_{2} D=r_{2} \end{aligned}$
4. $\begin{aligned} & m\left(\angle A M O_{1}\right)=m\left(\angle B M O_{2}\right)=\gamma \\ & m\left(\angle C M O_{1}\right)=m\left(\angle D M O_{2}\right)=\beta \end{aligned}$	4. Vertical angles have equal measures.

(Continued next page)
(Continued from previous page.)

Statement

5. $m\left(\angle O_{1} M A\right)=m\left(\angle O_{1} A M\right)=\gamma$
$m\left(\angle O_{2} M B\right)=m\left(\angle O_{2} B M\right)=\gamma$
$m\left(\angle O_{1} M C\right)=m\left(\angle O_{1} C M\right)=\beta$
$m\left(\angle O_{2} M D\right)=m\left(\angle O_{2} D M\right)=\beta$
$m\left(\angle O_{1} A C\right)=m\left(\angle O_{1} C A\right)=\delta$

Reason

5. By step 4 and base angles of isosceles have equal measures.
6. $m\left(\angle A O_{1} M\right)=m\left(\angle B O_{2} M\right)=180^{\circ}-2 \gamma$
$m\left(\angle C O_{1} M\right)=m\left(\angle D O_{2} M\right)=180^{\circ}-2 \beta$
7. The angle sum in a triangle is 180°.
8. $m\left(\angle A O_{1} C\right)=m\left(\angle B O_{2} D\right)$
9. $m\left(\angle O_{1} A C\right)=$
$m\left(\angle O_{1} C A\right)=m\left(\angle O_{2} B D\right)=$
$m\left(\angle O_{2} D B\right)=\delta$
10. $m(\angle M A C)=m(\angle M B D)=\beta+\delta$
11. $A C \| D B$
12. The angle sum around a point is 360°.
13. By step 7, angle sum in a triangle is 180° and base angles of an isosceles triangle are equal.
14. Steps 5 and 8 .
15. $\angle M A C$ and $\angle M B D$ are congruent alternating interior angles formed by $A C$ and $B D$, hence $A C \| B D$.

Conclusion

In this paper, we explored two externally tangent circles. Specifically, we constructed a dynamic sketch of the situation within GeoGebra. We used the software's visualization capabilities to motivate formal proof. Dragging the circles to numerous locations within our sketch, we noted that two chords appeared parallel. While our actions did not constitute formal proof, our sketch provided us with compelling evidence that supported our conjecture (what we refer to as "semi-proof").

While an inductive tool like GeoGebra can't replace rigorous proof, engaging students in an examplesfirst approach provides them with a motivation to prove (e.g., "I wonder if those sides are really parallel in all cases?"). Moreover, the experience with GeoGebra lays a sound logical and mathematical foundation for crafting deductive arguments. We believe that students' immersion in proofwriting and argumentation improves their ability to cope with challenging problems while enhancing their ability to explain steps in a process and building convincing arguments.

References

Alqahtani, M. M. and Powell, A. B. (2016). Instrumental appropriation of a collaborative, dynamicgeometry environment and geometrical understanding. International Journal of Education in Mathematics, Science and Technology, 4(2):72-83.

Heath, T. L. et al. (1956). The thirteen books of Euclid's Elements. Courier Corporation.
Stupel, M. and Ben-Chaim, D. (2017). Using multiple solutions to mathematical problems to develop pedagogical and mathematical thinking: A case study in a teacher education program. Investigations in Mathematics Learning, 9(2):86-108.

David Ben-Chaim, benchaim831@gmail.com, is a university professor at Technion-Israel Institute of Technology. He served as a curriculum development consultant for the Connected Mathematics Project at Michigan State University. His research interests include curriculum development and design and the use of technology as a tool to foster student conceptual understanding.

