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LOCUS OF CRITICAL POINTS FOR SOME POLYNOMIALS
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Abstract

Given a polynomial with complex coefficients, the celebrated Gauss-Lucas’s theorem and Mar-
den’s theorem offer us insights into the geometry of the locus of its critical points. In the following
paper, the authors explore the geometry under certain restrictions of the roots of the polynomials.
In particular, the authors identify some regions where all critical points do not occur.
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INTRODUCTION

The locus of critical points of polynomials is an exciting field Frayer et al. (2014); Marden (1949) with
numerous connections and physical interpretations. For instance, the zeros of a polynomial’s deriva-
tive are the equilibrium points because of the mass on the roots in the Newtonian field Marden (1949).

Marden’s theorem is one of the well-known results Kalman (2008b) relevant to the zero of the deriva-
tive of a polynomial. Inspired by Linfield (1920), the theorem reveals a connection between geometry
and analysis—namely, that the critical points of the polynomial are the foci of the ellipse Kalman
(2008a). A fundamental result, the so-called Gauss-Lucas theorem Lucas (1879), shows that the criti-
cal points lie in the convex hull of given polynomial roots. When the polynomials have more restricted
forms, such as with real coefficients or their roots are remarkable, more precise results are available.
In particular, the region of locus of the polynomial roots in the real polynomials case is smaller than
the result of Gauss-Lucas theorem (Jensen, 1913; Marden, 1949; Sendov, 2014). It has been proved
that every non-real zero of the derivative of a real polynomial f(z) lies in or on at least one of the
Jensen circles1 of f(z). Jensen’s theorem provides a method to restrict the real polynomial roots to
get a smaller region of the roots’ locations. In this paper, we investigate the loci of polynomials with
roots that occur on individual curves.

Motivated by Dan Kalman’s new proof Kalman (2008a) of Marden’s theorem, works such as Aghekyan
and Sahakyan (2013) and Frayer et al. (2014) focus on cubic polynomials with roots on the unit cir-
cle or certain lines. Frayer and others Frayer et al. (2014) have studied the movement of the critical
points of a complex cubic polynomial when its roots move. In this article, Frayer et al. made use of
the result that there is a circumcircle through any three non-collinear points r1, r2, r3. In particular,

1The Jensen circle is formed by using the line segment that joins the pair of imaginary conjugate roots of a real
polynomial as its diameter.
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the authors explored the unit circle with r3 = 1 and |r1| = |r2| = 1 and found that critical points
cannot occur in an open disk

{
z ∈ C :

∣∣z − 2
3

∣∣ < 1
3

}
. Relevant results are provided in Aghekyan and

Sahakyan (2013).

This paper investigates the locus of critical points of polynomials with roots that occur on certain
curves. We extend some results known for cubic polynomials (see Frayer et al. (2014)). We use
GeoGebra, a dynamic graphing tool, to help visualize critical points based on the motion of the poly-
nomial roots. In section one, we give explicit examples for quartic polynomials; in section two, we
identify regions that critical points do not occur for polynomials of any degree.

1 QUARTIC POLYNOMIALS

In this section, we work exclusively with the quartic polynomials with complex coefficients. In this
case, a critical point is defined to be a zero of the first derivative of the polynomial, which is a root of
a cubic polynomial Larson (2012). We assume the polynomials are of the form as in Notation 1.1. In
this case, the roots form a parallelogram on the complex plane, and r1 and r2 move on a circle with
radius t, centered at (0, 0).

Notation 1.1. Let Λ denote the family of complex quartic polynomials q(z) such that

q(z) = (z − 1)(z + 1)(z − r)(z + r)

for r 6= ±i, |r| = t, t > 0 and r ∈ C.

Remark. For r = ±i, q(z) = z4 − 1, and q′(z) = 4z3 cases, all of critical points are zero.

Theorem 1.2. For the polynomial defined as above, the loci of its nonzero critical points satisfy the
equation t > 0, (

a2 + b2
)2

=
(
a2 − b2

)
+
t4

4
− 1

4
.

Proof. Suppose p(z) ∈ Λ, with roots ±1 and ±r, and let c be the critical points of p. Then

p(z) = (z − 1)(z + 1)(z − r)(z + r)

p′(z) = 4z3 − 2
(
r2 + 1

)
z,

and
0 = 4c3 − 2

(
r2 + 1

)
c.

For c 6= 0, we have

c2 =
r2 + 1

2
.

Let c = a+ bi, a, b ∈ R, r = t cos θ + it sin θ, θ ∈ (0, π), then

a2 + 2abi− b2 =
t2 cos 2θ + 1

2
+
t2 sin 2θ

2
i.
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Thus, we get

a2 − b2 =
t2 cos 2θ + 1

2

2ab =
t2 sin 2θ

2
.

Compute (a2 + b2)
2 by these two equations and simplify it,

(
a2 + b2

)2
=
(
a2 − b2

)2
+ 4a2b2 =

t2 cos 2θ

2
+

1

4
+
t4

4
=
(
a2 − b2

)
+
t4

4
− 1

4
.

We obtain the desired equation (a2 + b2)
2

= (a2 − b2) + t4

4
− 1

4
.

Remark. A family of Cassini ovals is represented by the equation,(
x2 + y2

)2
= 2α2

(
x2 − y2

)
+ β4 − α4

with α =
√
2
2
, β = t

√
2

2
as t varies. A Cassini oval is described by a point such that the product of its

distances from two fixed points a distance of 2α apart is a constant β2 (α > 0, β > 0) (Weisstein,
2004). The shape of the curve depends on the value of β and α. If α < β, the curve is a single loop
with an oval or dog bone shape. If α > β, then the curve consists of two loops. The case α = β
produces a lemniscate. We illustrate with an example.

Example 1.3. Suppose p(z) ∈ Λ, with roots ±1, ±r and t = 1. The locus of nonzero critical points
a+ bi and −a− bi of p(z) is (

a2 + b2
)2

= a2 − b2

which is a Lemniscate with α =
√
2
2

= β.

We used GeoGebra to generate the trace. Readers are encouraged to engage in our construction at
https://www.geogebra.org/m/zhahcbs2. Note that right-clicking on a critical point and
then selecting the Show trace option generates clear traces of the point (See Figure 1).

Figure 1. Show trace option from pop-up menu.

In Figure 2, circle u is the unit circle that the roots move on, and curve L represents the loci of the
critical points of p(z).
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Figure 2. Lemniscate with (a2 + b2)
2

= a2 − b2.

2 GENERAL CASE

In this section, we set p(z) = (z − z1) (z − z2) · · · (z − zn) and assume all z1, z2, ..., zn in C and
|z1| = |z2| = ... = |zn| = 1. We are interested in the question: Where will the critical points occur as
the complex polynomial roots move on the circle? Frayer and others in Frayer et al. (2014) prove that
when n = 3, the cubic complex polynomial has a disk

{
z ∈ C :

∣∣z − 2
3

∣∣ < 1
3

}
that the critical points

cannot occur in it. To extend their result to polynomials of higher degrees, we modify the open disk
that are used to identify the “deserts” in Frayer et al. (2014).

Notation 2.1. Given α > 0, zt = eiθt , t = 1, 2, ..., n. For each t, we denote by Dzt
α , the circle of

diameter α that passes through zt and zt − αzt. Namely,

Dzt
α =

{
z ∈ C :

∣∣∣z − (eiθt − α

2
eiθt
)∣∣∣ =

α

2

}
.

We first prove a lemma about the circle Dzt
α (Notation 2.1) that will be used in the theorems below.

Remark. In Frayer et al. (2014), given α > 0, they denote by Tα the circle of diameter α that passes
through 1 and 1− α in the complex plane. That is,

Tα =
{
z ∈ C :

∣∣∣z − (1− α

2

)∣∣∣ =
α

2

}
.

Lemma 2.2. Let z ∈ C with |z| < 1. If z ∈ Dzt
α , then

Re

(
eiθt

zt − z

)
=

1

α
.

Proof. Let A = (1, 0), O = (0, 0), |zt| = 1, |z| < 1, r = |zt− z|, and set ∠AOzt = θt, ∠Oztz = ω in
Figure 3. It follows that

zt − z
eiθt

= re−iω.

That is
eiθt

zt − z
=

1

r
eiω.
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Hence,

Re

(
eiθt

zt − z

)
= Re

(
1

r
eiω
)

=
1

r
Re
(
eiω
)

=
cosω

r
.

The result holds since cosω = r
α
.

Figure 3. Relationship between the circle Dzt
α and the point z.

By Gauss-Lucas theorem, the critical points of a polynomial lie in the convex hull of its roots. Since
we assume all roots are on the unit circle, the critical points are also in the interior of the unit disk.

Notation 2.3. Let Ω denote the family of complex polynomials w,

w(z) = (z − z1) (z − z2) · · · (z − zn)

where zi = eiθi , 1 ≤ i ≤ n, and zi 6= zj for any 1 ≤ i, j ≤ n.

Lemma 2.4. Let p(z) ∈ Ω and c1, c2, . . . , cn−1 denote critical points of p(z) and ck ∈ Dzt
αk
, 1 ≤ k ≤

n− 1. Then
n−1∑
k=1

1

αk
= n− 1.

Proof. We may write p′(z) = C (z − c1) (z − c2) . . . (z − cn−1) for someC ∈ C. Since (ln (p′(z)))′ =
p′′(z)
p′(z)

, and ln (p′(z)) = lnC + ln (z − c1) + · · ·+ ln (z − cn−1) , we have

p′′(z)

p′(z)
=

n−1∑
k=1

1

z − ck
.

Put z = zt,
p′′(zt)

p′(zt)
=

n−1∑
k=1

1

zt − ck
.

Note by our assumption and Notation 2.3, we have p′(zt) 6= 0, zt 6= zk for any k.
Hence, we have

Re

(
p′′(zt)

p′(zt)
eiθt
)

= Re

(
n−1∑
k=1

eiθt

zt − ck

)
=

n−1∑
k=1

1

αk
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by Lemma 2.2.

On the other hand, write p(z) = (z − zt)g(z), we get p′(z) = (z − zt)g
′(z) + g(z) and p′′(z) =

(z − zt)g′′(z) + 2g′(z). So,

p′′(zt)

p′(zt)
=

2g′(zt)

g(zt)
= 2 (ln(g(z)))′|z=zt = 2

n−1∑
m 6=t

1

zt − zm

Again, by Lemma 2.2, we get

Re

(
p′′(zt)

p′(zt)
eiθt
)

= 2
n−1∑
m=1

Re

(
eiθt

zt − zm

)
= 2

n−1∑
k=1

1

2
= n− 1

Since both zt and zm are on the unit circle whose diameter is 2, we use Lemma 2.2 to obtain the
second equality.

Together, we get
n−1∑
k=1

1

αk
= n− 1.

Finally, we obtain:

Theorem 2.5. If z1, z2, ..., zk, k ≤ n, are the roots of a complex polynomial p(z) ∈ Ω, there are k
disks Dzk

αk
, in which critical points cannot occur no matter how remaining roots varied on the unit

circle.

Proof. Let c1, c2, . . . , cn−1 denote the critical points of p(z), and ck ∈ Dzk
αk

for each k. By Gauss-
Lucas theorem, we know that for any 1 ≤ k ≤ n− 1, |ck| < 1, which means that 1

αk
≥ 1

2
for each k.

By Lemma 2.4,
∑n−1

k=1
1
αk

= n− 1. Then we find that

n− 1 =
n−1∑
k=1

1

αk
=

1

αg
+

n−2∑
k 6=g

1

αk
≥ 1

αg
+ (n− 2)

1

2
.

So that,

αg ≥
2

n
.

This means that the diameter of the disk Dzg
αg which critical points occur on cannot be smaller than

2
n
. As a result, for all of the roots rk, there is no critical point of p(z) inside the disks {z ∈ C : |z−(
zk − zk

n

)
| < 1

n

}
.

Remark. The theorem works out the critical points’ locations of polynomial, which roots are con-
cyclic. For critical points’ locations in other polynomials cases, such as a polynomial with roots on
an ellipse, we find that Lemma 2.2 cannot be used because roots are on an ellipse instead of the circle.
It means that the way we use in this paper to derive Theorem 2.5 cannot be used.

Here is an example that illustrates Theorem 2.5.
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(a) Disks with no critical points. (b) Traces of three critical points.
Figure 4. Critical points on Disk

Example 2.6. Suppose the complex quartic polynomial

p(z) = (z − z1) (z − z2) (z − z3) (z − z4) ∈ Ω

for z1 = 1, z2 = −1, and |z3| = 1 = |z4| .

Because z1 = 1, z2 = −1, and n = 4, by Theorem 2.5, there are two disks
{
a ∈ C :

∣∣a− 3
4

∣∣ < 1
4

}
and

{
b ∈ C :

∣∣b+ 3
4

∣∣ < 1
4

}
that the critical points of p(z) will not occur wherever other two roots z1

and z2 are (for p(z) ∈ Ω, |z1| and |z2| should equal to 1).

In Figure 4a, points e and f are the roots ±1 of the complex quartic polynomial. The yellow disks
a and b are

{
a ∈ C :

∣∣a− 3
4

∣∣ < 1
4

}
and

{
b ∈ C :

∣∣b+ 3
4

∣∣ < 1
4

}
that the critical points cannot occur in

them as other roots z1, z2 varied on the unit circle u. In GeoGebra, we can see these two disks di-
rectly by using the Show trace tool (Figure 4b). See https://www.geogebra.org/classic/
ere36kg4 for the construction. The orange, blue, and green parts are traces of three critical points.
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