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Abstract
The purpose of this exploratory note is to offer teaching/learning ideas in the exploration of the
famous Monty Hall Game Show, Let’s Make a Deal, in an introduction to probability theory class
using GeoGebra spreadsheets in a computer lab in groups of 2 to 3 people.
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1 INTRODUCTION

This exploratory article is based on an activity implemented by the author in the teaching of a uni-
versity level Probability Theory class with an audience of mathematics and mathematics education
majors. Upon the completion of Conditional Probability and Independence chapter from the course
textbook, 75 minutes of class time was dedicated to the exploration of the famous Monty Hall Para-
dox, which is named after the host of the famous TV game show Let’s Make a Deal. The problem
owes its fame to a reader’s letter that was sent to Parade magazine’s “Ask Marilyn” column from
1990: Suppose you’re on a game show, and you’re given the choice of three doors. Behind one door
is a car; behind the others, goats. You pick a door, say No.1, and the host, who knows what’s behind
the doors, opens another door, say No.3, which has a goat. He then says to you, “Do you want to pick
door No.2?” Is it to your advantage to switch your choice?

Figure 1. Let’s Make a Deal (Hevesi, 2017).

The columnist Marilyn vos Savant responded to the letter with the recommendation that the contestant
should switch to the other door. Many readers disagreed with Marilyn’s response that switching would
be a better strategy than keeping the originally selected door. My students explored this problem with
GeoGebra spreadsheets.
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2 SETTING THE STAGE TOWARDS SIMULATING

Students first began by defining a list containing door numbers via the syntax door = {1, 2, 3}
in GeoGebra’s input bar. They then made a plan for how to use each column of the spreadsheet. The
most common approach was to use Column A to define the prize door and Column B to define the
door selected by the contestant (or vice versa) by typing A1 = RandomElement(door) and B1
= RandomElement(door) respectively. In this article, we assume that Column A represents the
door that hides the prize (the car) and Column B is the contestant’s selection.

3 MODELING THE GAME SHOW HOST’S ACTION

Column C is then used to model the host’s opening of an unselected door containing a goat: C1 =
If(A1==B1, RandomElement(Remove(door, {A1})), RandomElement(Remove
(door, {A1, B1}))). This command might be explained as follows: When the contestant se-
lects the door with the car behind it, the code takes a random element from the list of doors with
the winning door removed. When the contestant selects a door with a goat, the code takes a random
element from the list of doors with the winning door and the contestant’s pick removed (in other
words, the “other” goat door). At this point, I noted two different approaches among the groups.
Some groups explored the outcome without conditioning (KEEP or SWITCH). With this approach,
students basically verified that you either win or lose the game with equal chance. For that purpose,
Column D is used to randomly select any number from door = {1, 2, 3} except the one shown
by the host: D1 = RandomElement(Remove(door, {C1})). Finally, Column E is used to
determine whether the contestant actually won or lost the game: E1 = If(A1 == D1, "W",
"L"). This way, all columns are dragged down to row 1000 to simulate the game 1000 times. Figure
2 depicts the first 20 trial-snapshot from 1000 simulations.

Figure 2. A 20-Trial snapshot from 1000 simulations.

4 RECORDING VALUES

To record the outcomes, a 4 ˆ 4 table space (e.g., I1:L4) is selected on the spreadsheet. Cells
I1:L1 are labeled as Event, Win, Loss, Total, respectively. Cells I2:I4 are labeled as Frequency,
Experimental Probability, Theoretical Probability, respectively. The CountIf command is then used
to calculate the frequency of each event: J2 = CountIf(x == "W", E1:E1000) and K2 =
CountIf(x == "L", E1:E1000). Experimental probabilities are obtained by dividing these
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numbers by 1000, the number of simulations: J3 = J2 / 1000 and K3 = K2 /1000. The
theoretical probabilities are entered in the corresponding cells J4 = 0.5 and K4 = 0.5. Finally,
the Sum command is used to add these frequencies and the probabilities: L2 = Sum(J2:K2) and
L3 = Sum(J3:K3).

5 CONDITIONING (KEEP)

Column F is used to simulate the KEEP conditional event. The syntax F1 = If(A1 == B1,
"W", "L") basically reaffirms the fact that the contestant did not change their mind. Column F
is then dragged down to row 1000 to simulate the game 1000 times as before. Figure 3 depicts the
first 20 trial-snapshot from 1000 simulations. The CountIf command is used to determine the
frequencies and the experimental probabilities in a similar manner as before.

Figure 3. A 20-Trial snapshot from 1000 simulations (KEEP Conditioning—Column F).

6 CONDITIONING (SWITCH)

Likewise, Column G is used to simulate the SWITCH conditional event. The syntax G1 = If(F1
== "W", "L", "W") ensures that the contestant did change their mind and switched to the re-
maining closed door. Dragging down to Cell G1000, the game is simulated 1000 times as before.
Figure 4 depicts the first 20-trial snapshot from 1000 simulations. The CountIf command is used
to record the experimental values in a similar manner.

Figure 4. A 20-Trial snapshot from 1000 simulations (SWITCH Conditioning—Column G).
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7 INCREASING THE NUMBER OF SIMULATIONS

I observed that some groups performed the simulation 5,000 times and some others 10,000 times,
which seemed to have produced results that appeared more in agreement with the theoretical ones
(Figure 5).

Figure 5. Recorded values for (a) N “ 5, 000 (b) N “ 10, 000 simulations.

8 THEORETICAL PROBABILITY OF WINNING

W, L, K, S denote the events of Winning, Losing, Keeping, and Switching, respectively. Using the
sample space approach (Figure 6), students determined the actual conditional probabilities P pW |Kq “
p3
9
q “ p1

3
q and P pW |Sq “ p6

9
=2
3
q, in agreement with the experimental results. I observed that students

were always questioning the validity of the Column D simulation (Figure 2) and the previously stated
“obvious fact,” you either win or lose the game with equal chance. This method of questioning led
students to probe further into the actual winning and losing probabilities.

Figure 6. Theoretical conditional probabilities P pW |Kq “ 3{9 and P pW |Sq “ 6{9.

9 QUESTIONING THE “KEEP” AND “SWITCH” EVENTS

Because W X K and W Y S are mutually exclusive events whose union yields W , via the law of
total probability, we obtain the probability of Winning by conditioning on Keeping or Switching as
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follows:

P pW q “ P pW XKq ` P pW X Sq “ P pKqP pW |Kq ` P pSqP pW |Sq “
1

3
P pKq `

2

3
P pSq

The probability of winning, in a sense, can be viewed as the weighted average of P pW |Kq (i.e.,
the conditional probability of winning given that KEEP strategy is used), and P pW |Sq (i.e., the con-
ditional probability of winning given that SWITCH strategy is used). Students then showed that
P pW q “ 1

2
ô P pKq “ P pSq “ 1

2
which is in agreement with the Column D simulation (Figure 5).

But where did the assumption P pKq “ P pSq “ 1
2

arise from? This was actually a crucial assump-
tion; in reality, are the events of KEEP or SWITCH equally likely? What makes the contestant keep
their original selection? What makes them switch? Students in different groups provided diversity of
factors that could influence the contestant’s decision of keeping or switching, such as the game show
host’s attitude, the reaction of the audience, or even the contestant’s mood at that particular moment
in time. With these concerns in mind, students derived a general formula for the winning probabil-
ity P pW q and the losing probability P pLq as a function of keeping probability P pKq “ p with the
restriction that P pSq “ 1´ p as follows:

P pW q “
1

3
P pKq `

2

3
P pSq “

1

3
p`

2

3
p1´ pq “

p2´ pq

3

P pLq “ P pKqP pL|Kq ` P pSqP pL|Sq “
2

3
P pKq `

1

3
P pSq “

2

3
p`

1

3
p1´ pq “

p1` pq

3

Students further verified that with for p “ 1
2
, the winning and losing probabilities would reduce to

P pW q “ 2´p
3
“ 1.5

3
“ 1

2
and P pLq “ 1`p

3
“ 1.5

3
“ 1

2
, respectively, in agreement with the experimental

results (Figure 5).

10 DELVING FURTHER INTO CONDITIONAL EVENTS

The last part of the class time was dedicated to retrieving conditional probabilities P pK|W q, P pS|W q,
P pK|Lq, P pS|Lq from the spreadsheet data and comparing them with the theoretical ones. In order to
determine these conditional probabilities, students created four more columns (H, I, J, K) by defining
the cells:
H1 = If(A1 == B1 ^ E1 == "W", 1, 0);
I1 = If(A1 ‰ B1 ^ E1 == "W", 1, 0);
J1 = If(A1 == B1 ^ E1 == "L", 1, 0);
K1 = If(A1 ‰ B1 ^ E1 == "L", 1, 0);

dragging these down to H10000; I10000; J10000; K10000, respectively, as usual. Figure 7 depicts
the first 30-trial snapshot from 10,000 simulations. Once again, the CountIf command is used to
determine the frequencies and the experimental probabilities in a similar manner as before:
N17 = CountIf(x == 1, H1:H10000);
O17 = CountIf(x == 1, I1:I10000);
N22 = CountIf(x == 1, J1:J10000);
O22 = CountIf(x ==1, K1:K10000) (See Figure 10).
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Figure 7. Depicting a 30-Trial Snapshot from 10,000 Simulations

Figure 8. Recorded Values for N “ 1, 000 Simulations

Figure 9. Recorded values for N “ 5, 000 simulations.

Figure 10. Recorded values for N “ 10, 000 simulations.
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11 USING BAYES’ RULE

The class concluded with the derivation of the theoretical conditional probabilities P pK|W q, P pS|W q,
P pK|Lq, P pS|Lq in terms of P pKq “ p.

P pK|W q “ P pW |KqP pKq
P pW q

“
1
3
¨p

2´p
3

“
p

2´p

P pS|W q “ P pW |SqP pSq
P pW q

“
2
3
¨p1´pq
2´p
3

“
2´2p
2´p

P pK|Lq “ P pL|KqP pKq
P pLq

“
2
3
¨p

1`p
3

“
2p
1`p

P pS|Lq “ P pL|SqP pSq
P pLq

“
1
3
¨p1´pq
1`p
3

“
1´p
1`p

As I had emphasized in the last section of the Conditional Probability and Independence chapter from
the course textbook, students completed their exploration of the Monty Hall Problem by verifying that
the conditional probability P pl|W q itself is a probability by showing P pK|W q ` P pS|W q “ p

2´p
`

2´2p
2´p

“
2´p
2´p

“ 1 and that that the conditional probability P pl|Lq itself is a probability by showing
P pK|Lq ` P pS|Lq “ 2p

1`p
`

1´p
1`p

“
1`p
1`p

“ 1. Students further verified that with the P pKq “ p “ 1
2

assumption, the conditional probabilities P pK|W q “ p
2´p

, P pS|W q “ 2´2p
2´p

, P pK|Lq “ 2p
1`p

, and
P pS|Lq “ 1´p

1`p
would reduce to P pK|W q “ 0.5

1.5
“ 1

3
, P pS|W q “ 1

1.5
“ 2

3
, P pK|Lq “ 1

1.5
“ 2

3
, and

P pS|Lq “ 0.5
1.5
“ 1

3
, respectively, in agreement with the experimental results.

12 CONCLUDING REMARKS

12.1 Why the Monte Hall Problem?

With regard to the study of the Monte Hall problem, the significance of our exploration is threefold.
The activity illustrates (1) how a popular game show can motivate students; (2) how the notion of
conditional probability P pl|F q can be visualized as a probability itself by comparing the actual con-
ditional probabilities with the experimental results, in coordination with the sample space approach
and the total law of probability; and (3) how conditional probability simulations can be implemented
in GeoGebra for prior and posterior probabilities in coordination with the Bayesian analysis.

12.2 Why GeoGebra?

While one can model the Monte Hall scenario using other software—for instance, an Excel spreadsheet—
GeoGebra offers a number of advantages. For one, the GeoGebra scripting environment enables
teachers and students to extend the functionality of applets using GeoGebra commands or Javascript.
Secondly, GeoGebra offers an integrated mathematics environment—with graphical, algebraic, geo-
metric, and statistical representations dynamically linked. The capacity to link representations offers
valuable pedagogical advantages that build upon students’ previous mathematical understandings in
ways that Excel (or Minitab or SPSS or SAS) cannot hope to do. Thirdly, GeoGebra is familiar. Its
flexibility makes it useful across courses in our department and in various contexts within my course.
Thus, when exploring the Monte Hall problem with the software, I didn’t need to spend time prepar-
ing my students to use GeoGebra—we hit the ground running and used familiar tools immediately
in service of our investigation. In all, exploring the Monte Hall problem using GeoGebra with my
students was a winning combination.
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APPENDIX – GEOGEBRA COMMAND SYNTAX GUIDANCE 

Retrieved from wiki.geogebra.org 

 
Command  Functionality Example 

CountIf( <Condition>, 

<List> ) 

Counts the number of elements in the list 

satisfying the condition. 

CountIf( x < 3, {1, 2, 3, 4, 5} ) 

gives you the number 2. 

If( <Condition>, <Then>, 

<Else> ) 

Yields a copy of object Then if the condition 

evaluates to true, and a copy of object Else if 

it evaluates to false. 

If( n==3, x + y = 4, x - y = 4 ) 

yields line x + y = 4 when n = 

3, and line x - y = 4 for all n not 

equal to 3. 

RandomElement( <List> ) Returns randomly chosen element from the 

list (with uniform probability).  

RandomElement ({3,2,-4,7}) 

yields one of {-4,2,3,7}. 

Remove( <List>, <List> ) 

 

Removes objects from the first list each time 

they appear in the second list.  

Remove({1,3,4,4,9},{1,4,5}) 

yields list {3,4,9}. 

 


